
Zelda: Catch the Koroks

Evan Zhang, Ethan Lin, Justin Tien-Smith

CS 4620 Final Project

Cornell University

Figure 1: A great big (infinite!) world

Group member credits
• Evan Zhang:

– Terrain, Korok, Interaction Modes Implementation.

– Gaming Logic and User Interaction Design (music,
model, texture, and sound effect).

• Ethan Lin:

– Grass, Skybox, Lighting, and Fog implementation.

– Trees shader and optimization (modifying trees to use
instanced particles for speed up like the grass).

– Variable texture mapping for the terrain based on gradi-
ents in the shader.

• Justin Tien-Smith:

– L-system trees and terrain integration.

– Procedurally generated rocks (scrapped), terrain tex-
ture, and helped with grass animation.



Abstract
Zelda is the group’s favorite game, and Koroks are the group’s
favorite characters in Zelda. These tiny little cuties are hiding in
the bushes, under the rocks, or in the water, waiting for Link to
spot them. Our project, Zelda: Catch the Koroks, aims to recreate
the enchanting world of Zelda by developing an immersive 3D en-
vironment where players can explore vast, procedurally generated
terrains to locate and collect Koroks. When exploring in our scene,
you will hear the most classic Zelda BGM and the “Yah-Hah-Hah”
voice when you collect the Koroks.

1 Interaction Mode
We have two first player interaction modes in our application: in-
spector and player. Both modes of interaction are implemented
with the angle-axis quaternion multiplications.

1.1 Inspector Interaction Mode
The Inspector Interaction Mode allows users to ignore
collision with the scene and navigate the 3D environment with first-
person controls. Under inspector interaction mode, users are able to
fly around and stay floating at whichever 3D position they want, as
shown in Fig 2. This mode is primarily used for debugging during
development. It has the following key features:

• First-Person Navigation: Move using W, A, S, and D keys
with a movement speed of 40.0 units/second.

• Mouse Rotation: Adjust camera yaw and pitch via mouse
movement with a sensitivity of 0.002.

• Zooming: Use the mouse wheel to move the camera forward
or backward along its forward vector.

Overall, the FirstPersonInspectorInteraction class
offers a framework for first-person navigation, enhancing both de-
velopment and user interaction within the application.

Figure 2: Floating in Inspector Mode

1.2 Player Interaction Mode
The Player Interaction Mode enables users to navigate
the 3D environment with realistic movement mechanics, including
collision handling and jumping. This mode is intended for end-
users, providing an immersive experience within the application, as
shown in Fig 3. This interaction mode has the following key fea-
tures:

• First-Person Navigation: Move using W, A, S, and D keys
with a movement speed of 10.0 units/second.

• Mouse Rotation: Adjust camera yaw and pitch via mouse
movement with a sensitivity of 0.002.

• Zooming: Use the mouse wheel to move the camera for-
ward or backward along its forward vector, maintaining ter-

rain height when not jumping.

• Jumping Mechanics: Press the Space key to initiate a jump,
incorporating gravity for realistic vertical movement.

• Collision Handling: Prevents the camera from passing
through terrain by updating the camera height to match the
current terrain level.

• Movement Detection: Tracks active movement inputs and
updates the application state accordingly.

Overall, the FirstPersonPlayerInteraction class pro-
vides a comprehensive framework for player navigation, balancing
responsiveness with realistic movement mechanics to deliver an en-
gaging user experience within the application.

Figure 3: Walking in Player Mode

2 Scene Composition
2.1 Infinite Terrain
The terrain within the application is procedurally generated to cre-
ate expansive and realistic 3D environments. This generation pro-
cess leverages a combination of noise functions, tiled terrain man-
agement, and dynamic feature placement to ensure both visual fi-
delity and performance efficiency. Key components during terrain
generation are listed below:

• Tiled Terrain System: The terrain is divided into smaller,
manageable tiles using the TerrainModel class. This seg-
mentation allows for efficient loading and unloading of terrain
segments based on the player’s position, optimizing memory
usage and rendering performance.

• Height Map Generation: Each terrain tile utilizes a height
map to define elevation variations. Height maps are gener-
ated using multi-octave simplex noise, providing natural and
detailed terrain features. Parameters such as maxHeight,
frequency, octaves, and persistence control the
roughness and complexity of the terrain. One big advantage
to use multi-octave noise is that it combines large-scale un-
dulations with fine details, mimicking real-world terrain fea-
tures. The texture of the terrain is also varied based on the
approximated gradient of the terrain to produce rock-wall like
features. This is done by mixing the texture map with a gray
color based on the gradient value. These features are shown
in Fig 4.

• Noise Functions: The fast-simplex-noise library’s
makeNoise2D function generates 2D simplex noise. We use
the same seed for consistency across terrain tiles.

• Dynamic Tile Management: As the player navigates the en-
vironment, the system dynamically loads new terrain tiles
within a specified range around the camera and unloads those



that move out of range. This approach maintains performance
by only rendering necessary terrain segments.

• Vegetation and Placement of Features: Trees and grass are
procedurally placed based on terrain height and slope. The
system ensures natural distribution by avoiding overly steep
areas and maintaining minimum distances between objects,
enhancing the realism of the environment.

• Collision Handling and Terrain Sampling: Accurate colli-
sion detection is achieved by sampling terrain heights at spe-
cific coordinates using bilinear interpolation from the height
maps. This ensures the player remains grounded and interacts
naturally with the terrain surface.

Figure 4: Terrain generated with multi-octave noise

2.2 Trees
The TreeModel class is designed to procedurally generate a tree-
like structure as shown in Fig 5 based off of a Lindenmayer system
(L-system). An L-system is a string rewriting system we found that
is used to model the growth patterns of plants and fractal structures.
For our TreeModel, the L-system string defines rules for creating
a branching, tree-like form. The model interprets the string to create
instanced particles that represent trunk and leaf particles. The key
features include the following:

• L-system String and Rules: The tree is generated from a
symbolic string that defines the structure:

– The initial string, this.str, starts as "S", a seed
symbol.

– Multiple rewriting iterations expand the seed into
a more complex string. This value is defined in
this.iterations.

– The different symbols represent either movement,
branching, or leaf placement. These symbols are as fol-
lows:

* ’F’ indicates moving forward and creating a
branch particle.

* ’B’ indicates the start of branching.

* ’l’, ’r’, ’u’, ’d’ (and their combinations like
’lu’, ’ru’, etc.) indicate rotations around dif-
ferent axes.

* ’[’ and ’]’ indicate pushing or popping trans-
formations onto or off of a stack in order to
remember the position and orientation before
branching.

* ’L’ represents the placement of leaves.

Our expand method applies the rewriting rules to transform
the symbols into more complex patterns involving branching
and leaves. This iterative process leads to a final expanded
string that encodes a tree’s structure.

• Using a stack to keep track of branching: The L-system’s
bracket symbols are essential as they handle the branching.
When encountering a ’[’ symbol, the current transformation
for that particle (position, rotation) is pushed onto the stack
and when encountering a ’]’ symbol, the last transformation
is popped off of the stack, going back to that previous position
and orientation. This design allows the tree to branch out and
then return to the previous point to start and other branches
without losing track of where it came from.

• Drawing the Branches and Leaves as Particles: As the sys-
tem interprets each ’F’ symbol, it moves forward and creates
a new TrunkParticle at the new position. When it encoun-
ters a leaf symbol ’L’, it creates smaller LeafParticles. The
leaf generation step appears to add multiple individual leaf
particles around the branch endpoint, but one LeafParticle is
an instance of ten randomly generated spheres with varying
green colors. Using instanced particles for the leaves like this
allows for a more dense canopy, without compromising the
frame rate of our scene, which was an issue we initially faced
before we changed the particle system into an instanced par-
ticle system.

• Transformations with Quaternions: The code uses quater-
nions to handle rotations. Symbols like ’l’, ’r’, ’u’, ’d’
indicate rotations about the previous particle’s axes. ’l’ and
’r’ rotate around the Z-axis (left/right). ’u’ and ’d’ ro-
tate around the X-axis (up/down). The combined symbols like
’lu’ or ’rd’ apply a combination of rotations in both axes
to produce more complex directional change. An additional
“gnarliness” parameter is added to introduce more natural
variation, twisting the trunk and branches slightly so the tree
isn’t perfectly straight.

• Particle Scaling and Color Interpolation: The depth in the
tree (how many branches deep) affects the particle size and
color. The base branches are thicker and have darker bark-like
color. As you move further up, increasing depth, the segments
become thinner and the color transitions to a greener hue. This
is achieved by interpolating between two colors and two sizes
as depth increases.

• Swaying Animation: To animate the swaying of the trees,
we used the vertex shader for the leaf particles and trunk parti-
cles. We updated the position in the shaders using a sinusoidal
function concerning time.



Figure 5: Trees procedurally generated with an L-system using six
iterations instead of just five like in our final scene.

2.3 Grass
The grass rendering in this project is inspired by The Legend of
Zelda: Breath of the Wild. A key challenge in rendering grass is
achieving dense coverage over large spaces, which requires mil-
lions of grass blades. Our initial naive implementation using the
example particle system allowed rendering only 10,000 blades at
25 FPS, which was insufficient for large-scale coverage. Even
after employing an instanced particle system, where each grass
blade shared the same geometry, rendering beyond 20,000 instances
caused significant performance drops due to GPU limitations. This
is especially problematic in the context of infinite terrain generation
where dense coverage over a large area is extremely important. Af-
ter spending a lot of time on this problem we came up with the so-
lution described below which allows us to render millions of blades
of grass under the limitations of ThreeJS and Anigraph.

Configuration

• Instanced Geometry as Patches: The key idea was to reduce
the number of instanced particles (which we discovered was
the main bottleneck) while increasing the number of blades.
This was accomplished by grouping blades into patches, with
each patch containing multiple blades. Random offsets within
each patch created natural-looking grass distributions, allow-
ing us to increase visual density with fewer than 1,000 in-
stanced patches per tile.

• Terrain Adaptation: For non-flat terrain with variable
heights, initializing every blade in each patch at the correct
height was challenging. The shader dynamically queries the
terrain height map to position each blade accurately during
rendering, rather than relying on initialization.

• Dynamic Grass Placement: Grass was restricted from ap-
pearing on steep surfaces like rock walls during initialization
by approximating the terrain gradient or normal. A discard
condition in the shader removed grass blades that leaked onto
unsuitable surfaces, ensuring a clean terrain.

• Final Configuration: The final setup for our scene uses 600
blades per patch, 500 patches per tile, and 9 tiles. This is
a total of 600×500×9=2.7 million blades rendered per frame
at maximum fps without trees and unnoticeable performance
loss with trees. We also tested the limits of the approach and
were able to render 50 million blades at 25 fps with 1000
blades per patch, 2000 patches per tile, and 25 tiles. Fig 6
depicts terrain with 18 million blades of grass (1000 blades
per patch, 2000 patches per tile, 9 tiles) that was rendered at

70 fps. The density is so great that the limiting factor in the
visual is the height map resolution which leads to patching
artifacts due to the same approximated gradient across blades.

Figure 6: 18 million blades of grass rendered at 70 fps.

Shader Integration

• Wind Simulation: Grass sway was achieved using a sinu-
soidal function in the vertex shader, modulated by time. The
sway offset scaled with the blade’s local height (y-value), cre-
ating a realistic wind effect.

• Height Mapping: As mentioned above, we used a height map
in the vertex shader to determine the height of each vertex. We
also approximated the gradient to determine if vertex should
be discarded if the hill was too steep.

• Lighting: Grass was rendered with Blinn-Phong shading to
simulate dynamic lighting conditions. In order to account for
the simple geometry of each blade, instead of clipping the
specular and diffuse strength to 0.0 if the normal and corre-
sponding vector were unaligned (dot product less than 0.0) we
multiplied by -1.0 to make it positive. This ensured that both
night and day modes displayed appropriate lighting, account-
ing for the user’s view light and sunlight. The Blinn-Phong
shading results in some unnatural effects as all of the grass
normals face a single direction in order to maintain a cartoon-
ish effect. This causes shadow regions depending on the view
light and sun light which we think adds to the scene even if it
is a little unnatural. Randomly assigning the normals makes
the lighting much more accurate, but leads to grass shadows
and graininess. Fig 7 is an example of this phenomenon.

By combining these optimizations and shader techniques, the grass
system achieved high visual fidelity and performance while cover-
ing large terrains effectively.

2.4 Fog
To implement the fog effect as shown in Fig 8, we went into the
fragment shader for the trees, leaves, grass, and terrain and simply
blended a white base color with the original color based on distance
away from the camera.



Figure 7: Grainy Grass with Random Normals

Figure 8: Scene with Fog

2.5 Koroks
Koroks shown in Fig 9 are collectible entities inspired by the Zelda
series, enhancing gameplay by providing objectives and interactive
elements. Korok models are imported from Blender. Key features
include:

• Generation: Koroks are procedurally generated during ter-
rain tile creation. Their positions are randomized within the
tile, and their heights are adjusted based on the terrain to en-
sure they appear naturally placed.

• Collision and Collection: Players collect Koroks by enter-
ing their bounding boxes. Upon collection, the Korok is re-
moved, a Korok sound effect from Zelda is played, and the
player’s score increases. Distant Koroks are removed to op-
timize performance, ensuring responsive and efficient game-
play. When the player reaches a score of 5, a victory page
will be displayed.

• Movement: Koroks move autonomously with velocity vec-
tors, updating their positions every frame. Random direction
changes add unpredictability, keeping interactions dynamic
and engaging.

• Deforming Animation: Koroks feature periodic scaling an-
imations driven by sine wave functions, simulating lifelike
behaviors like breathing or idle motions. To preserve their
volume, the base and height scales are adjusted inversely, en-
suring a natural and consistent appearance.

Figure 9: A wandering Korok

2.6 Sky / Lighting
The sky in our project is not a custom feature, as we utilized the
shaders provided by the three.js Sky add-on. This implementation
is based on the paper ”A Practical Analytic Model for Daylight”
and offers a realistic atmospheric effect. We viewed this approach
as analogous to using pre-made skybox textures, as it provides
high-quality results with minimal effort. However, integrating these
shaders into our system did require some work, including creating
a custom SkyModel class in AniGraph to support the shaders and
manage uniform values.

Using the Sky Model allowed us to create dynamic lighting effects
by positioning a ”sun” point light that matched the sun’s location
in the Sky Model. This setup enabled variable lighting on the grass
based on the sun’s position, including pretty cool sunset effects.

To further enhance realism, we adjusted the Sky Model’s
parameters—such as “turbidity,” “Rayleigh scattering,” and
“mieCoefficient”—as functions of the sun’s height (polar angle).
These adjustments ensured consistent and visually appealing results
across different times of day.

In addition to tuning the Sky Model parameters for varying solar el-
evations, we also adjusted the strength of the view light based on the
sun’s polar angle. When the sun’s intensity is low, such as during
night mode, the view light becomes stronger, creating a flashlight
effect. This addition enhances the immersion and provides a better
visual experience in low-light conditions, making the night mode
both functional and visually appealing. In night mode, we chose to
make the trees and Koroks glow in the dark to make the scene more
interesting, as shown in Fig 10.

Figure 10: Night Mode.



3 References
• Website for Korok 3D model: Korok 3D Model on Sketchfab

• YouTube tutorial, which inspired our L-system tree generator:
Drawing plants with L-Systems

• ThreeJS Sky Reference: ThreeJS Sky Model.

• Atmospheric Sky Model Paper: Paper on research gate.

https://sketchfab.com/3d-models/korok-86d53f2626144c3aa715de86ade95ad1
https://www.youtube.com/watch?v=1AB3N3nrVwQ&ab_channel=ProgrammingChaos
https://threejs.org/docs/#examples/en/objects/Sky
https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight

