
Apple Is All You Need

Evan Zhang, Taylor Wang

CS 4620 Creative Project 2

Cornell University

Figure 1: Apples!

Abstract
I was sipping apple cider when we were brainstorming for a project
idea. Cider from Wegmans tastes sooo good ... Therefore, this
project is all about apples. As Tim Cook always likes to emphasize,
It’s something only Apple can do. We only do apples. There
are a lot of Apple elements in our rendered image: the modern
looking frosted glassy Apple icon, the vintage, old-school “brick-
ed” apple behind, the smaller apple topography and the bigger apple
pixel art on the ground, and even the realistic apple texture for the
background image. Almost every pixel is a part of some apple in
some form.
Our final rendered image is shown in Figure 1. It is rendered at

2000 by 2000 resolution. We leveraged multiprocessing and BVH
tree. It takes roughly 43 minutes to render without super-sampling
and about 5 hours to render with super-sampling where the sample
size is 8. Figure 1 shows the result with super-sampling.

1 Scene Composition
1.1 Apple Icon
Key features: Cylinders, Constructive Solid Geometry, Fresnel
Reflection, Refraction, Bounding Volume Hierarchy
As you all probably know, the most classic Apple icon can be con-
structed by boolean operations upon circles of different sizes. In our
ray tracer, we leverage Constructive Solid Geometry (CSG) tech-

https://www.bilibili.com/video/BV1sa4y1X7Ng/?spm_id_from=333.337.search-card.all.click&vd_source=c6b51f8b2df4828a0c11991586cbed98


niques to perform these boolean operations efficiently. However,
since we are simulating 3D geometries, we apply these operations
on cylinders instead of adding, intersecting, and subtracting 2D cir-
cles.
We incorporate Fresnel reflection and refraction with regular dif-
fuse coloring to apply a frosted glassy material onto the Apple icon.
Fresnel reflection simulates the way light reflects off surfaces at
varying angles and refraction traces rays which pass through the
icon. Bounding Box for the entire CSG object is constructed for
faster rendering.

1.2 “Brick-ed Apple”
Key features: Normal Mapping, Texture Mapping, Blender,
Mesh Loading, Bounding Volume Hierarchy
This apple is created and exported from Blender. We extended the
OBJ file loader to extract normals and UV coordinates for each tri-
angle, enabling detailed Normal Mapping and Texture Mapping.
A normal map and its corresponding texture map of a brick wall are
applied to this apple to give it a special look. Bounding Box for the
loaded triangle mesh is constructed for faster rendering.

1.3 Floor
Key features: Normal Mapping, Texture Mapping, Bump Map-
ping, Bounding Volume Hierarchy
The floor of the scene is essentially a giant sphere divided into a
lot of grids. We extended the Sphere class to compute the UV co-
ordinates so that we can apply normal, texture, and bump maps
onto each grid. The normal map, generated using an online tool,
simulates surface normals to create the topography of small “apple
hills”. The texture map features the pixel art of an apple, providing
a base color and pattern that enhances visual interest. The bump
map introduces subtle surface irregularities, adding tactile realism
without increasing geometric complexity. Certainly, bounding Box
for the sphere is constructed for faster rendering.

1.4 Background Image
Key features: Background Image Mapping
Yes. Even the background image is related to apples. We use a
texture map for a real apple and map it from Cartesian coordinates
to spherical coordinates. This is simulating folding the texture map
around the upper edge. This creates a cool “time tunnel” effect
since there are a lot of yellow vertical stripes on the texture map.

2 Features
2.1 Constructive Solid Geometry
CSG is primarily used to create the Apple icon. We draw the circles
on top of the Apple icon and measure their relative sizes. We define
a Cylinder class and a RectangularBox class to construct the icon.
The cylinder is the most important added primitive in this project.
A cylinder is defined by its base center, axis direction, height, and
radius. Comparatively, RectangularBox is defined purely for aux-
iliary purposes, which will be introduced later. In total, there are
11 cylinders and 3 auxiliary rectangular boxes. All have the same
height.
The “ideal” process to construct a 2D Apple icon is shown in graphs
1-6 in Figure 2. The reason why I call this process ideal is because it
requires more complicated operations other than simple union, dif-
ference, and intersection. It needs some kinds of disintegration and
deletion, which our implementation does not have. More specifi-
cally, the red area A in graph 2 and the red area B in graph 3 can
not be constructed with union, difference, and intersection. This is
why we need rectangular boxes to carve these areas out.
Solve for A: Graph 7 shows an alternative way to do the process in
Graph 2. Two cylinders (green), one small rectangular box (red),

and one big rectangular box (purple) are used to achieve this. The
upper curvature of Area A is basically the small rectangular box
minus a cylinder.
Solve for B: Graph 8 shows an alternative way to do the process in
Graph 3. One additional rectangular box is needed to achieve this.
The two lower curvatures of Area B are simply the rectangular box
minus two cylinders.

Figure 2: Boolean operations between cylinders and rectangular
boxes to shape the Apple icon

2.2 Fresnel Reflection
To accurately simulate the behavior of light at material interfaces
(especially the glassy Apple icon), we implemented Fresnel Reflec-
tion using Schlick’s approximation. In our implementation, when
a ray intersects a surface, we first determine whether it is entering
or exiting the material to correctly compute the ratio of refractive
indices (η). Using the angle between the incoming ray and the
surface normal (θi), we apply Schlick’s formula to estimate the re-
flectance (R), which dictates the intensity of the reflected light. We
also accounted for total internal reflection when the angle of inci-
dence exceeds the critical angle even though it is extremely rare in
our scene.
In class, we discussed how reflection dominates over refraction
when the angle of incidence is nearly 90 degrees. We observe this
phenomenon in our scene as well. As shown in Figure 3, on the
lateral (side) area of the Apple icon where the angle of incidence is
big, we see a lot of reflection of the “brick-ed” apple.



Figure 3: Reflection

2.3 Refraction
Since we have already calculated reflectance (R), transmittance is
just 1-R. Also, utilizing the angle of incidence (θi) between the in-
coming ray and the surface normal, we apply Snell’s Law to com-
pute the angle of refraction and subsequently derive the direction of
the refracted ray.
Opposite from reflection, when the angle of incidence is small, we
should see more refraction. As shown in Figure 4, on the cap (front)
of the Apple icon where the angle of incidence is small, we see a
lot of refraction of the floor.

Figure 4: Refraction

2.4 Normal Mapping
Normal maps are applied on both the “brick-ed” apple and the floor.
During rendering, the UV coordinates computed for each intersec-
tion point are used to bilinearly sample the corresponding normal
from the normal map stored in the Material class. Figure 5 shows
the normal map for the floor, and Figure 6 shows the normal map for
the “brick-ed” apple. This sampled normal, initially defined in tan-
gent space, is then transformed into world space using the surface’s
tangent and bitangent vectors. By adjusting the original geomet-
ric normal with these perturbed normals, the lighting calculations
produce the illusion of detailed surface features.

Figure 5: Normal map for the floor

Figure 6: Normal map for the “brick-ed” apple

Figure 7 shows the “apple hills” topography after applying normal
map to the floor sphere. Figure 8 shows the “brick-ed” effect of the
apple.

Figure 7: Apple topograph on the floor

Figure 8: “Brick-ed” effect

2.5 Texture Mapping
To enrich the visual detail of the floor and the “brick-ed” apple, we
implemented texture mapping by mapping 2D image textures onto
3D surfaces. This process begins with computing UV coordinates
for each intersection point. For instance, in the Sphere class, we
convert Cartesian coordinates to spherical coordinates to derive the
UV mappings. The Material class is equipped with a diffuse map,
which holds the texture image data. During rendering, when a ray
intersects a surface, the corresponding UV coordinates are used to
perform bilinear sampling of the diffuse texture, retrieving the pre-
cise color information from the texture image. This sampled color
is then utilized as the diffuse color in the shading calculations. Fig-



ure 9 shows the texture map for the floor, and Figure 10 shows the
texture map for the “brick-ed” apple.

Figure 9: Texture map for the floor

Figure 10: Texture map for the “brick-ed” apple

2.6 Bump Mapping
Bump mapping utilizes a grayscale texture (bump map) to simulate
small-scale surface irregularities by perturbing the surface normals
during shading calculations. In our implementation, only the floor
sphere has a bump map image stored in the Material class. We
implemented bump mapping for other primitives but decided not
to use them. The bump map is bilinearly sampled at the intersec-
tion point using the sphere’s UV coordinates. The sampled bump
value is then scaled by a predefined bump scale factor to determine
the height displacement. Utilizing the surface’s tangent and bitan-
gent vectors, we adjust the original geometric normal by adding the
scaled perturbations. Figure 11 shows the bump map for the floor.

Figure 11: Bump map

Figure 12 shows the floor after the bump map is applied.

Figure 12: Bump map

2.7 Bounding Volume Hierarchy
We implemented axis-aligned bounding boxes (AABB) for all
primitives in our scene. Then we constructed a BVH tree to im-
prove render efficiency. Each node in the BVH tree encapsulates a
subset of objects within the bounding box. By recursively splitting
the scene along the axis with the largest extent, the BVH efficiently
partitions space, allowing rays to quickly eliminate large regions
without intersections. During rendering, rays traverse the BVH.
They first check against the top-level bounding boxes and only per-
form detailed intersection tests with objects in intersected nodes.
Figure 13 shows an example scene that we created to test BVH’s
performance improvement. The scene is composed of 10x10x10 =
1000 spheres and a large floor. Rendering with BVH takes 148.31
seconds whereas rendering without BVH takes 2245.30 seconds.
That is, in a scene with a lot of occlusions between objects, our
implementation of the BVH tree demonstrates a 15x performance
improvement.

Figure 13: BVH efficiency test scene

2.8 Defocus Blur
Our implementation utilizes the camera’s aperture and focal dis-
tance parameters to control the extent of the blur. When a ray is
generated, if defocus blur is enabled, its origin is randomly sam-
pled within the camera’s aperture area. The direction of the ray
is then adjusted to converge towards a predetermined focal point.
This ensures that objects at the focal distance remain sharp while
those closer or further away become progressively blurred. This ap-
proach not only adds depth to the scene but also highlights the main
subjects by subtly de-emphasizing background and foreground ele-
ments. Additionally, super-sampling is employed to enhance image
quality by averaging multiple samples per pixel, reducing noise and
aliasing artifacts. As shown in Figure 14, the focal point lies on the
right side of the Apple icon. Therefore, the left side of the icon, the
“brick-ed” apple behind and the floor are blurry. This image is also
rendered at 2000 by 2000 resolution. Bust since super-sampling is



incorporated, the time it takes to render this image grows propor-
tionally to the number of rays we sample per pixel.

Figure 14: Defocus blur for our scene

2.9 Super-sampling
Since the floor has a grid-like pattern of the apple pixel art, the orig-
inal rendered image suffers from the problem of aliasing on the far
end of the floor, as shown in Figure 15. Therefore, we incorpo-
rated super-sampling to perform anti-aliasing. The result is shown
in Figure 16.

Figure 15: Alias artifact

Figure 16: Anti-alias

2.10 Background Image Mapping
The background is sampled from the texture of a real apple as
shown in Figure 17. We created a “time tunnel” effect with this
texture image by simulating wrapping around along the top image
boundary. This mapping is achieved by converting the ray’s Carte-
sian direction vector into spherical coordinates, which are then nor-
malized to obtain UV texture coordinates. Additionally, a darken-
ing factor is applied to the bilinearly sampled background color.

This allows for subtle control over the background’s brightness and
its influence on the overall scene ambiance.

Figure 17: Background image before projection

Figure 18 shows the “time tunnel” background in the rendered im-
age.

Figure 18: Background image after projection

3 References
• Website to create the normal map: https://cpetry.
github.io/NormalMap-Online/

• Website to download texture and normal maps: https://
opengameart.org/

• Project name: Vaswani, Ashish, et al. Attention Is All You
Need. Advances in Neural Information Processing Systems,
vol. 30, pp. 5998–6008, 2017.

https://cpetry.github.io/NormalMap-Online/
https://cpetry.github.io/NormalMap-Online/
https://opengameart.org/
https://opengameart.org/

